Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4632, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042221

RESUMO

The Juno spacecraft has been collecting data to shed light on the planet's origin and characterize its interior structure. The onboard gravity science experiment based on X-band and Ka-band dual-frequency Doppler tracking precisely measured Jupiter's zonal gravitational field. Here, we analyze 22 Juno's gravity passes to investigate the gravity field. Our analysis provides evidence of new gravity field features, which perturb its otherwise axially symmetric structure with a time-variable component. We show that normal modes of the planet could explain the anomalous signatures present in the Doppler data better than other alternative explanations, such as localized density anomalies and non-axisymmetric components of the static gravity field. We explain Juno data by p-modes having an amplitude spectrum with a peak radial velocity of 10-50 cm/s at 900-1200 µHz (compatible with ground-based observations) and provide upper bounds on lower frequency f-modes (radial velocity smaller than 1 cm/s). The new Juno results could open the possibility of exploring the interior structure of the gas giants through measurements of the time-variable gravity or with onboard instrumentation devoted to the observation of normal modes, which could drive spacecraft operations of future missions.

2.
Angew Chem Int Ed Engl ; 56(7): 1775-1779, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-27981710

RESUMO

Ligand-modified palladium nanoparticles deposited on a carbon carrier efficiently catalyze the direct synthesis of H2 O2 and the unique performance is due to their hybrid nanostructure. Catalytic testing demonstrated that the selectivity increases with the HHDMA ligand content from 10 % for naked nanoparticles up to 80 %, rivalling that obtained with state-of-the-art bimetallic catalysts (HHDMA=C20 H46 NO5 P). Furthermore, it remains stable over five consecutive reaction runs owing to the high resistance towards leaching of the organic moiety, arising from its bond with the metal surface. As rationalized by density functional theory, this behavior is attributed to the adsorption mode of the reaction intermediates on the metal surface. Whereas they lie flat in the absence of the organic shell, their electrostatic interaction with the ligand result in a unique vertical configuration which prevents further dissociation and over-hydrogenation. These findings demonstrate the importance of understanding substrate-ligand interactions in capped nanoparticles to develop smart catalysts for the sustainable manufacture of hydrogen peroxide.

3.
ChemSusChem ; 9(24): 3407-3418, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27739630

RESUMO

Sugar alcohols are applied in the food, pharmaceutical, polymer, and fuel industries and are commonly obtained by reduction of the corresponding saccharides. In view of the rarity of some sugar substrates, epimerization of a readily available monosaccharide has been proposed as a solution, but an efficient catalytic system has not yet been identified. Herein, a molybdenum heteropolyacid-based catalyst is developed to transform glucose, arabinose, and xylose into less-abundant mannose, ribose, and lyxose, respectively. Adsorption of molybdic acid onto activated carbon followed by ion exchange to the cesium form limits leaching of the active phase, which greatly improves the catalyst stability over 24 h on stream. The hydrogenation of mixtures of epimers is studied over ruthenium catalysts, and it is found that the precursor to the desired polyol is advantageously converted with faster kinetics. This is explained by density functional theory on the basis of its more favorable adsorption on the metal surface and the lower energy barrier for the addition of a hydrogen atom to the primary carbon atom. Finally, different designs for a continuous process for the conversion of glucose into mannitol are studied, and it is uncovered that two reactors in series with one containing the epimerization catalyst and the other containing a mixture of the epimerization and hydrogenation catalysts increases the mannitol/sorbitol ratio to 1.5 from 1 for a single mixed-bed reactor. This opens a prospective route to the efficient valorization of renewables to added-value chemicals.


Assuntos
Monossacarídeos/química , Álcoois Açúcares/química , Configuração de Carboidratos , Catálise , Hidrogenação , Modelos Moleculares , Teoria Quântica , Estereoisomerismo
4.
Phys Chem Chem Phys ; 18(26): 17259-64, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27079275

RESUMO

A series of ruthenium catalysts supported on two different carbons were tested for the hydrogenation of lactic acid to 1,2-propanediol and butanone to 2-butanol. The properties of the carbon supports were investigated by inelastic neutron scattering and correlated with the properties of the ruthenium deposited onto the carbons by wet impregnation or sol-immobilisation. It was noted that the rate of butanone hydrogenation was highly dependent on the carbon support, while no noticeable difference in rates was observed between different catalysts for the hydrogenation of lactic acid.

5.
Phys Chem Chem Phys ; 17(35): 23236-44, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26282833

RESUMO

The sol immobilisation technique, in which a stabilising ligand (such as polyvinyl alcohol or polyvinyl pyridine) can be used to tune metal particle size and composition, has become a valuable method of making supported nanoparticle catalysts. An unfortunate consequence of the stabilising ligand is that often access of reactant molecules to the metal nanoparticle surface is impeded. Several methods have been proposed for the removal of these ligands, though determination of the degree of their success is difficult. Here, we demonstrate the use of in situ infrared and UV-Vis spectroscopy to elucidate the access of carbon monoxide to the surface of Au/TiO2 catalysts before and after various ligand removal treatments. These were contrasted with a catalyst prepared by deposition precipitation prepared in the absence of stabilising ligand as a control. Changes were observed in the infrared spectrum, with the wavenumber of carbon monoxide linearly bonded to Au for catalysts shifting before and after ligand removal, which correlated well with the activity of the catalyst for carbon monoxide oxidation. Also the extent of shifting of the Au surface resonance plasmon band on the addition of carbon monoxide, observed by UV-Vis, also correlated well with catalyst activity. These simple methods can be used to determine the quantity of exposed metal sites after a ligand removal treatment and so determine the treatments effectiveness.

6.
Phys Chem Chem Phys ; 15(29): 12147-55, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23677173

RESUMO

In the solvent free oxidation of benzyl alcohol, using supported gold-palladium nanoalloys, toluene is often one of major by-products and it is formed by the disproportionation of benzyl alcohol. Gold-palladium catalysts on acidic supports promote both the disproportionation of benzyl alcohol and oxidative dehydrogenation to form benzaldehyde. Basic supports completely switch off disproportionation and the gold-palladium nanoparticles catalyse the oxidative dehydrogenation reaction exclusively. In an attempt to provide further details on the course of these reactions, we have utilized in situ ATR-IR, in situ DRIFT and inelastic neutron scattering spectroscopic methods, and in this article we present the results of these in situ spectroscopic studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...